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Problems on propagation of  harmonic waves and of  waves of  f inite duration in a cylindrical channel fil led 

by a liquid or a gas and surrounded by a porous permeable space are considered. A wave equation describing 

the dynamics  of  small  disturbances in a cylindrical channel with a permeable wall is obtained. Results  o f  

the analysis o f  wave evolution are presented for the cases of  channel filling by a liquid and a gas. 

The study of wave effects in tubes was begun in [1, 2] and developed in theoretical and experimental 

investigations [3-5 ]. Various aspects of filtration theory are presented and described in detail [6, 7 ]. However, the 

processes of wave propagation in channels surrounded by porous permeable space have received little attention in 

scientific literature, despite the importance of the problem, due to the widespread use of these models in science, 

engineering, and nature. 

The present paper studies the evolution of harmonic waves and waves of finite duration in a cylindrical 

channel which is filled by a liquid or a gas, possesses a permeable wall, and is surrounded by porous space. The 

engineering and scientific aspects of the problem can, in particular, be associated with the solution of practical 

problems of exploration, drilling, and exploitation of boreholes. Results and conclusions are applicable as 

differentiated information about near-borehole processes, a theoretical basis for predicting and current estimates 

of the state of near-borehole zones, and for substantiation of the complex of techniques and technologies used to 

increase oil and gas output of beds and the productivity of boreholes. 

1. We consider the propagation of small disturbances in a cylindrical channel in the presence of filtration 

processes through its permeable wall under the following assumptions: the channel and the incompressible skeleton 

of the porous space surrounding it are filled by the same medium (a liquid or a gas); the liquid is barotropic and 

its viscosity manifests itself only during filtration. Moreover, we assume that the wavelength is larger than the 

channel diameter. 

Within the framework of the scheme of one-dimensional motion, medium flow in the channel and its 

filtration through the permeable wall to surrounding porous space can be described by the following system of 

linearized equations 
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u (1) kmed 0 P(I) (4) 
= t ~ Or , r > rme d ; 

u (1) u (ro/rmed) p(1) o(1) (5) = , = --reed, r = rme d. 

We assume in general that there is a low-permeability crust on the outer surface of the channel  wall; the 

rate of medium absorption through the crust is assigned as follows 

u = h (P - ~ ~ (6) 
*reed) �9 

When the channel is surrounded by a porous space of finite length (filtration processes in propagation of 

disturbances take place in layers whose characteristic length is much smaller than the porous-wall thickness),  we 

add one more boundary  condition to the system of conditions (5), (6): 

p(l) = O, r ~  co (7) 

If the thickness of the permeable crust is small (rmed -- ro << ro) and hydraulic resistance during medium 

filtration through is negligible, then we write instead of (5) and (6) 

u (1 )=  u ,  p ( 1 ) = p ,  r = r  0.  (8) 

We have from Eqs. (1) and (2) with allowance for the equation of state 

1 02p 02P 2Po Ou ( 9 )  

C 2 0 t  2 Oz 2 r 0 Ot 

For the problem under  consideration we can obtain, using relation (9) and accounting for the equation of 

p iezoconduct iv i ty  and  b o u n d a r y  condi t ions  (7), (8),  the wave equat ion descr ibing the dynamics  of small 

disturbances in a cylindrical channel with a porous permeable wall. 

To find the solution of Eq. (3) under  conditions (7), (8) we use a Weber integral t ransform with kernel 

rK(r, ~t) [8 ], where 

K ( r , a )  = : 0  ( roa )  No (~,~) - : o  ( r a )  N o ( r 0 a ) ,  r o -< r < oo. 

Here  K(x) is McDonald function, which is determined by a first-order Hankel function, the imaginary part of which 

No(x) is a zero-order  Neuman function; Jo(x) is a zero-order  Bessel function. Multiplying Eq. (3) by the kernel 

rK(r, )t) and integrating the obtained expression from r 0 to infinity, we have 

Op(I) tr ~ -~r r--~r ) K ( r ,  2) dr ,  
Ot ro 

p(1) (z, 2, t) = ~ p(1) (z, r, t) rK (r, 2) dr.  
r 0 

Hence, with allowance for the conditions (7) and (8) we obtain the expression 

c)p(I) 
Ot - -  tc p _ p ( 1 )  , 

whose solution, satisfying the condition ~(l) = O, t = O, is 
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2K t 
(1) = ~ f p (,7,, r )  exp Ix2 2 (r - t) ] dr. 

0 

Using the Weber transform 

~(~) (~,a,  t) ;~ I,: (r a) 

r 0 (r 0 a) + N~0 (r 0 2) 

with allowance for 

2 
J0 (r02) N' 0 (r 0~) - N O (r 0~) J'0 (r02) - 7~ r 0 

we have from (4) 

4 kx 7 J" P (z, r) exp [ -  x2 z (t - r ) ]2  d2 (10) 
U =  2 - -  2 - " 

st /~r 0 r 0 0 J0 (r02) + Ar~0 (r 02) 

Substituting (10) into (6), we obtain the wave equation 

--7- J" ~ P (z, r) exp [ -  ( t - Q l , ~ d a d r  __Ozt 'oz  2 - 0 , (11) 2 
r 0 0 r 0 Jo (ro ]t) N~O (r 0 2t) 

which describes the evolution of small disturbances in a cylindrical channel with a porous permeable wall. 
We seek the solution of the problem in the form of an attenuating traveling wave assuming that the wave 

propagates parallel to the coordinate axis toward its positive direction 

P = A p e x p  [ i ( K z - c o t ) ] ,  u = A  u e x p  [ i ( K z - c o t )  l ,  

p(1) = A~ D (r) exp [i (Kz  - cot) l ,  u (1) = A (1) (r) exp [i (Kz  - cot) ] ,  

(12) 

K = k  + i3 ,  C p = C O / k .  

From the condition of the existence of a nontrivial solution of this form we obtain the dispersion expression 

- 2m 
Rme d K '  0 (YRmed) 

Y (K0 (YRmed) -- fli K'O (YRmed)) 

(13) 

r ,me  rme  
y = - i , f l i -  ro ix h , Rmed -- r0 

where the parameter  

r  r 0 r  
lyl = = ~ ,  r,,, = 

has the physical meaning [9 ] of the ratio of the channel radius (r 0) to the characteristic depth of filtration wave 
penetration (ra,) to the surrounding porous space, which expresses the distance at which the amplitude of filtration 

waves decreases by about twofold. 
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Fig. 1. Phase velocity (a) and coefficient of attenuation (b) in channel (ro -- 
5" 10 -2 m, kmed = 10 -12 m 2, m = 0.2) filled by water (1) (v = 1.06" 10 -6 

m2/sec, C = 1.425.103 m/sec) ,  air (2) (v = 1.5.10 -5 m2/sec, C -- 341 m/sec) .  

C o, m/sec;  8, m - l ;  w, sec -L 

If we ignore the hydraulic resistance of the channel wall during filtration (h --, oo, fli -'~ 0 ,  Rme d = I), we 
obtain from (13) 

K 2 = o9 2 (1 - 2 m  (In K 0 (y)) '  y - l )  C - 2 .  (14) 

Here Ko(y) is a zero-order McDonald function for which the integral representation 

K0 (Y) = 7 exp ( -  y ch ~) d~ 
0 

holds. 

Analysis of dispersion expression (14) within the range of high frequencies (r~o << r0), for which the 
condition 

ly l  > > 1  or o g > > w  x (15)  

is satisfied (where ogK -- r / r2  is the characteristic frequency at which the depth of penetration of filtration waves is 

on the order of the channel radius [9 ]), gives asymptotic relations 

Cp=C, ~=~0 C 

Within the range of low frequencies (r~o >> r0), which satisfy, besides the condition 

lyl << 1 or w<<o9x, (17) 

the additional condition 

2 
lyl In l y l l  > > 2 m ,  

the asymptotic relation for phase velocity and the coefficient of attenuation have the form 

C p = C ,  6 -  nm (18) 
r~C I ln ly l  I 

For the case of "extremely low" frequencies, when, besides condition (17), the condition 

2 
ly[ I l n l y l l < < 2 m ,  
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Fig. 2. Dispersion curves illustrating the effect of channel radius. 

is also satisfied, we have the following relations: 

Cp = c lyl V Ilnlyl ]-, (5 = co V - m  (19) 
V--~ C lyl • Ilnlyl l 

Analysis of expressions (16), (18), (19) shows that the velocity of propagation of harmonic disturbances 

in cylindrical channels sur rounded by a porous permeable medium changes from zero (Cp << C) in the low- 

frequency range to a value close to the sound velocity in the medium (Cp -- C) in the region of high frequencies. 

The quantity C / v  is a physical parameter  determining the dynamics of low-frequency disturbances. The  rate of 

a t tenuat ion increases with a decrease in the compressibility and kinematic viscosity of the medium, which is 

determined by the sound velocity in the medium. The  coefficient of at tenuation at both low and high frequencies 

is inversely proportional to the channel  radius and directly proportional to the porosity and permeabili ty of the 

channel walls. For low-frequency disturbances this dependence is stronger. 

Figure 1 presents dependences of the propagation velocity and the coefficient of at tenuation on frequency 

in channels filled by water and air that were calculated by dispersion equation (14). As is seen from the curves, in 

a less viscous medium - water - the wave at tenuation is stronger. For frequencies corresponding to the upper 

applicability limit of the studied model,  which is determined by virtue of the above taken assumption (2 = 

2 ~ C / w  >> 2r0, ~ is the wavelength) from the condition co << w* = w C / r  o (in particular, at r 0 = l0 - z  m for a porous 

water-saturated space the frequency limiting the applicability range of the theoretical model w. = 3- 10 5 s e c - l ) ,  the 

difference in the coefficients of at tenuation of disturbances in water and air is about 0.4 in the case illustrated. 

Figure 2 shows dispersion curves illustrating the effect of the channel radius. In the considered case the 

channel is filled by air. The  figures at the curves correspond to the channel radius. 

2. We consider the problem of the propagation of waves of finite duration in a cylindrical channel  with 

permeable walls. 

Let at the boundary  of a semi-infinite region the pressure disturbance be specified as a function of time 

P (o, t) = p(O) (t), 

with the function pO(t) satisfying the condition 

(20) 
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Fig. 3. Curve of pressure in channel (r 0 = 5" 10 -2  m, kmed = 10 -12 m 2, m = 

0.2) with water, t, msec. 

Fig. 4. Evolut ion of pressure  pulse in channel  (r 0 = 5-10 -2 m,  kmed = 
�9 10 -12 m 2, m = 0.2) filled by air. 

I P(~ I --, 0 ,  t -~ __ oo. 

The  evolution of pulse disturbances is studied on the basis of the wave equation according to Fourier 

analysis. 

For simplicity, we restrict ourselves to the consideration of long-term disturbances, during which the depth 

of filtration wave penetration into the porous space is much smaller than the channel radius. 

For the considered frequency range we represent the wave equation, obtained similarly to (11), as 

C 2 at 2 xr 0 -=%/-[~-~ Oz 2 �9 

We sought the solution of Eq. (21) in the form 

p (z, t) = ~ ~ (co) exp ( -  i ( / ( ( ,~ )  z - ,,,t)) d ~ .  
0 

A 

On the basis of boundary condition (20) we can write for the function P(w) 

^ 1 P (o)) = ~ _[~ p(0) (t) exp (~t)  dt ,  

As the dependence  K(w) we restrict ourselves to only its h igh-frequency branch,  which is valid for 

o) >> ~o,~. Then  from dispersion equation (14) we obtain the expression 

K 2 = w 2  (1 + - ~ ,  m)  C-2 "  ) ] 

The  evolution of weak impulse disturbance is numerically analyzed by algorithms of the fast Fourier 

t ransform [ 10-12 ]. Figure 3 illustrates the propagation and attenuation of a bell-shaped pulse disturbance of single 

amplitude with a length of 4-10 -3 sec in a channel filled by water, and Fig. 4, in a channel  filled by air. The  

numbers  at the curves correspond to the distance (in meters) from the site of signal initiation. It is seen from a 

comparative analysis of the curves that during pulse propagation both the at tenuation of pulse amplitude and 

smearing of the signal shape take place�9 In this case the attenuation process in water is more intense than in air. 

Under  the considered conditions in air the decrease in the wave amplitude is by about twofold at a distance of 10 
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Fig. 5. Propagation and attenuation of pressure pulse in air-filled channel, r 
= 5-  10 - 3  m. 

m from the site of signal initiation, whereas in water at a distance of 1 m from the initiation site the wave amplitude 

is about half of its initial value. Figure 5 illustrates the evolution of a similar pulse in a channel filled by air the 

radius of which is 10 times smaller. A comparison of the graphs of Figs. 4 and 5 shows that the process of pulse 

disturbance attenuation is a strong function of the channel radius - the thinner the channel, the more intense the 

attenuation. 

N O T A T I O N  

z, coordinate along the channel axis; P andp,  disturbances of pressure and density, respectively; w, velocity 

of medium in channel in cross-section with coordinate z at time instant t; u, rate of filtration through channel wall; 

C, sound velocity in medium; p, medium dynamic viscosity; kmed and m, permeability and porosity of space 

surrounding channel; x, coefficient of piezoconductivity; r 0, radius of inner surface of channel wall; rmed, coordinate 

of outer boundary of low-permeability crust; P(mle)d, pressure disturbance at interface between channel-wall outer 

surface and porous medium; K, wave vector; 6, Cp, and w, coefficient of attenuation, phase velocity, and angular 

frequency of disturbances. Super- and subscripts: 0, undisturbed state; (1), radial distribution of parameter in 

porous space around channel; reed, value of parameter in porous medium around channel; p, values pertaining to 

motion. 
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